Adjacent Side Formula:
From: | To: |
Definition: This calculator computes the length of the adjacent side in a right triangle using the hypotenuse and an angle.
Purpose: It helps students, engineers, and designers solve right triangle problems quickly and accurately.
The calculator uses the formula:
Where:
Explanation: The cosine of the angle relates the adjacent side to the hypotenuse in a right triangle.
Details: Right triangle calculations are fundamental in trigonometry, engineering, architecture, and physics applications.
Tips: Enter the hypotenuse length (must be > 0) and angle (must be between 0-90 degrees). The angle is measured between the hypotenuse and the side you're calculating.
Q1: What if I know the opposite side instead?
A: Use the formula \( a = hyp \times \sin(\theta) \) for the opposite side calculation.
Q2: Can I use this for non-right triangles?
A: No, this calculator is specifically for right triangles. Use the Law of Cosines for other triangles.
Q3: What units should I use?
A: Any consistent length units work (meters, feet, etc.), but the calculator displays meters by default.
Q4: How accurate are the results?
A: Results are accurate to 3 decimal places, sufficient for most practical applications.
Q5: What if my angle is in radians?
A: Convert radians to degrees first (1 radian ≈ 57.2958 degrees).